Validation of Crack Interaction Limit Model for Parallel Edge Cracks Using Two-dimensional Finite Element Analysis
نویسندگان
چکیده
Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS) code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a). Crack interaction factors are evaluated based on stress intensity factors (SIFs) for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5) and crack interval ratios (b/a > 1). For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.
منابع مشابه
Mixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
متن کاملCrack Interaction Studies Using XFEM Technique
In this paper, edge crack problems under mechanical loads have been analysed using extended finite element method (XFEM) as it has proved to be a competent method for handling problems with discontinuities. The XFEM provides a versatile technique to model discontinuities in the solution domain without re-meshing or conformal mesh. The stress intensity factors (SIF) have been calculated by domai...
متن کاملStress intensity factor at the hole-edge cracks tips in a finite plate
In the current research work, the problem of fracture mechanics in a plate with a central hole under tensile loading is studied. The stress intensity factors are calculated for a finite plate containing two symmetrical hole-edge cracks. The problem is solved by two different methods, namely the finite element method and the FRANC software analysis. At first the finite element method is used and...
متن کاملThermoelastic Fracture Parameters for Anisotropic Plates
This paper deals with the determination of the effect of varying material properties on the value of the stress intensity factors, KI and KII, for anisotropic plates containing cracks and subjected to a temperature change. Problems involving cracks and body forces, as well as thermal loads are analysed. The quadratic isoperimetric element formulation is utilized, and SIFs may be directly obtain...
متن کاملEstimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation
In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...
متن کامل